Sunday, April 20, 2025
HomeBlogDetection of ferrihydrite in Martian red dust records ancient cold and wet...

Detection of ferrihydrite in Martian red dust records ancient cold and wet conditions on Mars


  • Bishop, J. L. Chapter 3 – Remote Detection of Phyllosilicates on Mars and Implications for Climate and Habitability. in (eds. Cabrol, N. A. & Grin, E. A. B. T.-F. H. to L. on M.) 37–75 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809935-3.00003-7.

  • Schwertmann, U. & Murad, E. Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite. Clays Clay Min. 31, 277–284 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, 2003). https://doi.org/10.1002/3527602097.

  • Jambor, J. L. & Dutrizac, J. E. Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide. Chem. Rev. 98, 2549–2586 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sagan, C., Phaneuf, J. P. & Ihnat, M. Total Reflection Spectrophotometry and Thermogravimetric Analysis of Simulated Martian Surface Materials. Icarus 4, 43–61 (1965).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Adams, J. B. & McCord, T. B. Mars: Interpretation of spectral reflectivity of light and dark regions. J. Geophys. Res. 74, 4851–4856 (1969).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Dollfus, A. Étude des planètes par la polarisation de leur lumière. Suppl. aux. Ann. d.’Astrophysique 4, 3–114 (1957).

    ADS 

    Google Scholar
     

  • Sharonov, V. ~V. A Lithological Interpretation of the Photometric and Colorimetric Studies of Mars. Sov. Astron. 5, 199 (1961).

    ADS 
    MATH 

    Google Scholar
     

  • Morris, R. V. et al. Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. Solid Earth 94, 2760–2778 (1989).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bell, J. F. III, McCord, T. B. & Owensby, P. D. Observational evidence of crystalline iron oxides on Mars. J. Geophys. Res. Solid Earth 95, 14447–14461 (1990).

    Article 
    MATH 

    Google Scholar
     

  • Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pimentel, G. C., Forney, P. B. & Herr, K. C. Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner Infrared Spectrometer. J. Geophys. Res. 79, 1623–1634 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murchie, S. et al. Spatial Variations in the Spectral Properties of Bright Regions on Mars. Icarus 105, 454–468 (1993).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jouglet, D. et al. Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature. J. Geophys. Res. Planets 112, 1–20 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Milliken, R. E. et al. Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface. J. Geophys. Res. Planets 112, 1–15 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Zent, A. P. & Quinn, R. C. Measurement of H2O adsorption under Mars-like conditions: Effects of adsorbent heterogeneity. J. Geophys. Res. Planets 102, 9085–9095 (1997).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Audouard, J. et al. Water in the Martian regolith from OMEGA/Mars Express. J. Geophys. Res. Planets 119, 1969–1989 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Murchie, S. L. et al. Visible to Short-Wave Infrared Spectral Analyses of Mars from Orbit Using CRISM and OMEGA. in Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces (eds. Bell I. I. I., J. F., Bishop, J. L. & Moersch, J. E.) 453–483 (Cambridge University Press, 2019). https://doi.org/10.1017/9781316888872.025.

  • Bishop, J. L., Pieters, C. M., Hiroi, T. & Mustard, J. F. Spectroscopic analysis of Martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars. Meteorit. Planet. Sci. 33, 699–707 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bishop, J. L. Visible and Near-Infrared Reflectance Spectroscopy. in Remote Compositional Analysis (eds. Bell III J. F., Bishop, J. L. & Moersch, J. E.) 68–101 (Cambridge University Press, 2019). https://doi.org/10.1017/9781316888872.006.

  • Beck, P. et al. A Noachian source region for the “Black Beauty” meteorite, and a source lithology for Mars surface hydrated dust? Earth Planet. Sci. Lett. 427, 104–111 (2015).

    CAS 
    MATH 

    Google Scholar
     

  • Morris, R. V. et al. Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. Planets 111, E12S15 (2006).

  • Morris, R. V. et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. Planets 111, E02S13 (2006).

  • Morris, R. V. & Klingelhöfer, G. Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers. in The Martian Surface: Composition, Mineralogy and Physical Properties (ed. Bell, J.) 339–365 (Cambridge University Press, 2008).

  • Murad, E. & Schwertmann, U. The Möessbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Am. Mineral. 65, 1044–1049 (1980).


    Google Scholar
     

  • Coey, J. M. D. Amorphous solids: a review of the applications of the Mössbauer effect. J. Phys. Colloq. 35, C6-89–C6-105 (1974).

    Article 
    MATH 

    Google Scholar
     

  • Yen, A. S. et al. An integrated view of the chemistry and mineralogy of martian soils. Nature 436, 49–54 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ming, D. W., Morris, R. V., Clark, B. C. The Martian Surface. Aqueous alteration on Mars (Cambridge University Press, 2008). https://doi.org/10.1017/CBO9780511536076.

  • Madsen, M. B. et al. Overview of the magnetic properties experiments on the Mars Exploration Rovers. J. Geophys. Res. Planets 114, E06S90 (2009).

  • Goetz, W. et al. Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436, 62–65 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Madsen, M. B. et al. The magnetic properties experiments on Mars Pathfinder. J. Geophys. Res. Planets 104, 8761–8779 (1999).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Meslin, P.-Y. et al. Soil Diversity and Hydration at Gale Crater. Mars. Sci. 341, 1–9 (2013).

    ADS 

    Google Scholar
     

  • Lasue, J. et al. Martian Eolian Dust Probed by ChemCam. Geophys. Res. Lett. 45, 10,968–10,977 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rapin, W. et al. An interval of high salinity in ancient Gale crater lake on Mars. Nat. Geosci. 12, 889–895 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • David, G. et al. Evidence for Amorphous Sulfates as the Main Carrier of Soil Hydration in Gale Crater, Mars. Geophys. Res. Lett. 49, e2022GL098755 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bish, D. L. et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science 341, 1238932 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blake, D. F. et al. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science 341, (2013).

  • Achilles, C. N. et al. Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. J. Geophys. Res. Planets 122, 2344–2361 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Berger, J. A. et al. A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater. Geophys. Res. Lett. 43, 67–75 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McLennan, S. & Taylor, S. R. Planetary Crusts: Their Composition, Origin and Evolution. Cambridge Planetary Science (Cambridge University Press, 2008). https://doi.org/10.1017/CBO9780511575358.

  • Gellert, R. & Yen, A. S. Elemental Analyses of Mars from Rovers Using the Alpha-Particle X-Ray Spectrometer. in Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces (eds. Bishop, J. L., Bell III J. F. & Moersch, J. E.) 555–572 (Cambridge University Press, 2019). https://doi.org/10.1017/9781316888872.030.

  • Leshin, L. A. et al. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science. 341, 1238937 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Thomas, N. et al. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 212, 1897–1944 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bishop, J. L., Pieters, C. & Burns, R. G. Reflectance and Mössbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials. Geochim. Cosmochim. Acta 57, 4583–4595 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bishop, J. L. et al. Reflectance Spectroscopy of Ferric Sulfate-Bearing Montmorillonites as Mars Soil Analog Materials. Icarus 117, 101–119 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bell, J. F. et al. Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. J. Geophys. Res. Planets 105, 1721–1755 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Johnson, J. R. et al. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus 249, 74–92 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ruff, S. W. & Christensen, P. R. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. Planets 107, 2-1-2-22 (2002).

  • Sherman, D. M., Burns, R. G. & Burns, V. M. Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy. J. Geophys. Res. Solid Earth 87, 10169–10180 (1982).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Morris, R. V. et al. Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH). J. Geophys. Res. Solid Earth 90, 3126–3144 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Burns, R. G. Mineralogical Applications of Crystal Field Theory. Cambridge Topics in Mineral Physics and Chemistry (Cambridge University Press, 1993). https://doi.org/10.1017/CBO9780511524899.

  • Sklute, E. C. et al. Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides. Phys. Chem. Miner. 45, 1–26 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwertmann, U. & Cornell, R. M. Iron Oxides in the Laboratary (Wiley-VCH Verlag GmbH, 2000). https://doi.org/10.1002/9783527613229.

  • Dehouck, E., McLennan, S. M., Sklute, E. C. & Dyar, M. D. Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach. J. Geophys. Res. Planets 122, 358–382 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McSween, H. Y. & Keil, K. Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochim. Cosmochim. Acta 64, 2155–2166 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Viviano, C. E. et al. Composition of Amazonian volcanic materials in Tharsis and Elysium, Mars, from MRO/CRISM reflectance spectra. Icarus 328, 274–286 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fischer, E. M. & Pieters, C. M. The Continuum Slope of Mars: Bidirectional Reflectance Investigations and Applications to Olympus Mons. Icarus 102, 185–202 (1993).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bridges, N. T. et al. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates. Icarus 205, 165–182 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Scheinost, A. C., Chavernas, A., Barrón, V. & Torrent, J. Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils. Clays Clay Min. 46, 528–536 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carlson, L. & Schwertmann, U. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45, 421–429 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sassi, M. & Rosso, K. M. Roles of Hydration and Magnetism on the Structure of Ferrihydrite from First Principles. ACS Earth Sp. Chem. 3, 70–78 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Pommerol, A., Schmitt, B., Beck, P. & Brissaud, O. Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy. Icarus 204, 114–136 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bishop, J. L. & Pieters, C. M. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials. J. Geophys. Res. Planets 100, 5369–5379 (1995).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Guinness, E. A. Spectral Properties (0.40 to 0.75 Microns) of Soils Exposed at the Viking 1 Landing Site. J. Geophys. Res. 86, 7983–7992 (1981).

  • Johnson, J. R. et al. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 4. Final mission observations. Icarus 357, 114261 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Schröder, S. E. et al. Laboratory observations and simulations of phase reddening. Icarus 239, 201–216 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Guzewich, S. D., Smith, M. D. & Wolff, M. J. The vertical distribution of Martian aerosol particle size. J. Geophys. Res. Planets 119, 2694–2708 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pike, W. T. et al. Quantification of the dry history of the Martian soil inferred from in situ microscopy. Geophys. Res. Lett. 38, L24201 (2011).

  • Pieczara, G., Manecki, M., Rzepa, G., Borkiewicz, O. & Gaweł, A. Thermal stability and decomposition products of p-doped ferrihydrite. Mater. (Basel) 13, 1–16 (2020).


    Google Scholar
     

  • Stanjek, H. & Weidler, P. G. The effect of dry heating on the chemistry, surface area, and oxalate solubility of synthetic 2-line and 6-line ferrihydrites. Clay Min. 27, 397–411 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haberle, R. M. Estimating the power of Mars’ greenhouse effect. Icarus 223, 619–620 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sassi, M. & Rosso, K. M. Ab Initio Evaluation of Solid-State Transformation Pathways from Ferrihydrite to Goethite. ACS Earth Sp. Chem. 6, 800–809 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Schwertmann, U., Stanjek, H. & Becher, H.-H. Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 °C. Clay Min. 39, 433–438 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Das, S., Hendry, M. J. & Essilfie-Dughan, J. Transformation of Two-Line Ferrihydrite to Goethite and Hematite as a Function of pH and Temperature. Environ. Sci. Technol. 45, 268–275 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cornell, R. M. & Schwertmann, U. Influence of Organic Anions on the Crystallization of Ferrihydrite. Clays Clay Min. 27, 402–410 (1979).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Lee, S. & Xu, H. One-Step Route Synthesis of Siliceous Six-Line Ferrihydrite: Implication for the Formation of Natural Ferrihydrite. ACS Earth Sp. Chem. 3, 503–509 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Paige, C. R., Snodgrass, W. J., Nicholson, R. V., Scharer, J. M. & He, Q. H. The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media. Water Air. Soil Pollut. 97, 397–412 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rampe, E. B. et al. A mineralogical study of glacial flour from Three Sisters, Oregon: An analog for a cold and icy early Mars. Earth Planet. Sci. Lett. 584, 117471 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Klingelhöfer, G. et al. Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer. Science 306, 1740–1745 (2004).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rampe, E. B. et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet. Sci. Lett. 471, 172–185 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morrison, S. M. et al. Expanded Insights into Martian Mineralogy: Updated Analysis of Gale Crater’s Mineral Composition via CheMin Crystal Chemical Investigations. Minerals 14 at https://doi.org/10.3390/min14080773 (2024).

  • Ehlmann, B. L. et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters. Am. Mineral. 101, 1527–1542 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bishop, J. L. & Murad, E. Spectroscopic and geochemical analyses of ferrihydrite from springs in Iceland and applications to Mars. Volcano–Ice Interaction on Earth and Mars at https://doi.org/10.1144/GSL.SP.2002.202.01.18 (2002).

  • Janney, D. E., Cowley, J. M. & Buseck, P. R. Transmission Electron Microscopy of Synthetic 2- and 6-Line Ferrihydrite. Clays Clay Min. 48, 111–119 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schindler, M., Michel, S., Batcheldor, D. & Hochella, M. F. A nanoscale study of the formation of Fe-(hydr)oxides in a volcanic regolith: Implications for the understanding of soil forming processes on Earth and Mars. Geochim. Cosmochim. Acta 264, 43–66 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Childs, C. W. & Wilson, A. D. Iron oxide minerals in soils of the Ha’apai group, Kingdom of Tonga. Soil Res. 21, 489–503 (1983).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Childs, C. W., Matsue, N. & Yoshinaga, N. Ferrihydrite in volcanic ash soils of Japan. Soil Sci. Plant Nutr. 37, 299–311 (1991).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Childs, C. W. & Parfitt, R. L. Weighted mean concentrations of minerals in New Zealand soils. 2. Allophane/imogolite. New Zeal. Soil Bur. Sci. Rep. 82, 20 (1987).

  • Parfitt, R. L., Childs, C. W. & Eden, D. N. Ferrihydrite and allophane in four Andepts from Hawaii and implications for their classification. Geoderma 41, 223–241 (1988).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bishop, J. L. et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wordsworth, R. et al. A coupled model of episodic warming, oxidation and geochemical transitions on early Mars. Nat. Geosci. 14, 127–132 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Rampe, E. B. et al. Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes. Geology 40, 995–998 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huguenin, R. L. Photostimulated oxidation of magnetite: 1. Kinetics and alteration phase identification. J. Geophys. Res. 78, 8481–8493 (1973).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Lewis, D. G. Transformations induced in ferrihydrite by oven-drying. Z. f.ür. Pflanzenernährung und Bodenkd. 155, 461–466 (1992).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Burns, R. G. Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars. Geochim. Cosmochim. Acta 57, 4555–4574 (1993).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mustard, J. F. et al. Olivine and Pyroxene Diversity in the Crust of Mars. Science 307, 1594–1597 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hurowitz, J. A., Fischer, W. W., Tosca, N. J. & Milliken, R. E. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3, 323–326 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lundgreen, B., Jensen, H. G., Knudsen, J. M., Olsen, M. & Vistisen, L. Photostimulated oxidation of Fe2+ (aq): a Mars simulation experiment studied by Mössbauer spectroscopy. Phys. Scr. 39, 670 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Tabata, H., Sekine, Y., Kanzaki, Y. & Sugita, S. An experimental study of photo-oxidation of Fe(II): Implications for the formation of Fe(III) (hydro)oxides on early Mars and Earth. Geochim. Cosmochim. Acta 299, 35–51 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Chevrier, V. et al. Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars. Geochim. Cosmochim. Acta 70, 4295–4317 (2006).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Chevrier, V., Rochette, P., Mathé, P. E. & Grauby, O. Weathering of iron-rich phases in simulated Martian atmospheres. Geology 32, 1033–1036 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gasda, P. J. et al. Manganese-Rich Sandstones as an Indicator of Ancient Oxic Lake Water Conditions in Gale Crater, Mars. J. Geophys. Res. Planets 129, e2023JE007923 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lanza, N. L. et al. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophys. Res. Lett. 43, 7398–7407 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mitra, K., Moreland, E. L., Ledingham, G. J. & Catalano, J. G. Formation of manganese oxides on early Mars due to active halogen cycling. Nat. Geosci. 16, 133–139 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitra, K., Moreland, E. L. & Catalano, J. G. Capacity of Chlorate to Oxidize Ferrous Iron: Implications for Iron Oxide Formation on Mars. Minerals 10, https://doi.org/10.3390/min10090729 (2020).

  • Sultana, R., Poch, O., Beck, P., Schmitt, B. & Quirico, E. Visible and near-infrared reflectance of hyperfine and hyperporous particulate surfaces. Icarus 357, 114141 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pommerol, A. et al. The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues. Planet. Space Sci. 109–110, 106–122 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pommerol, A. et al. In-flight radiometric calibration of the ExoMars TGO Colour and Stereo Surface Imaging System. Planet. Space Sci. 105580, https://doi.org/10.1016/j.pss.2022.105580 (2022).

  • Thomas, N. et al. Absolute calibration of the Colour and Stereo Surface Imaging System (CaSSIS). Planet. Space Sci. 211, 105394 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Valantinas, A. et al. CaSSIS Color and multi-angular observations of martian slope streaks. Planet. Space Sci. 209, 105373 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Valantinas, A. et al. Evidence for transient morning water frost deposits on the Tharsis volcanoes of Mars. Nat. Geosci. 17, 608–616 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Vincendon, M. Mars surface phase function constrained by orbital observations. Planet. Space Sci. 76, 87–95 (2013).

    Article 
    ADS 

    Google Scholar
     

  • McCleese, D. J. et al. Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res. Planets 112, E05S06 (2007).

  • Pommerol, A. et al. Photometry and bulk physical properties of Solar System surfaces icy analogs: The Planetary Ice Laboratory at University of Bern. Planet. Space Sci. 59, 1601–1612 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gunderson, K., Thomas, N. & Whitby, J. A. First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE). Planet. Space Sci. 54, 1046–1056 (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pommerol, A. et al. Photometric properties of Mars soils analogs. J. Geophys. Res. Planets 118, 2045–2072 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Craig, M., Cloutis, E. ~A. & Mueller, T. ME and Mini-ME: Two Mars Environmental Simulation Chambers for Reflectance Spectroscopy. In 32nd Lunar and Planetary Science Conference, abstract #1368 (2001).

  • Hollandt, J., Becker, U., Paustian, W., Richter, M. & Ulm, G. New developments in the radiance calibration of deuterium lamps in the UV and VUV spectral range at the PTB. Metrologia 37, 563–566 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kinch, K. M. et al. Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Sci. Rev. 216, 141 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Poitras, J. T. et al. Mars analog minerals’ spectral reflectance characteristics under Martian surface conditions. Icarus 306, 50–73 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cloutis, E. A. et al. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions. Icarus 195, 140–168 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Valantinas, A. Bright and Dusty Regions of Mars: New Insights from Experiments and Orbital Color Imaging. Ph.D. thesis, Universität Bern https://boristheses.unibe.ch/id/eprint/5317 (2022).

  • Majzlan, J., Navrotsky, A. & Schwertmann, U. Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (Fe(OH)3), schwertmannite (FeO(OH)3/4(SO4)1/8), and ε-Fe2O3 1 1Associate editor: D. Wesolowski. Geochim. Cosmochim. Acta 68, 1049–1059 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments